Math 254-1 Exam 0 Solutions

1. Carefully state the definition of "linear combination". Give two examples.

A linear combination of some variables is those variables, each multiplied by any constant, added together. Many examples are possible: 3x + 7y, 8x + 0y + 2z, 0.

2. Carefully state the definition of "subspace". Give two examples.

A subspace is a vector space whose vectors are contained in another vector space. Many examples are possible: $\{(0,0)\}$ is a subspace of \mathbb{R}^2 , \mathbb{R}^2 is a subspace of \mathbb{R}^2 , $\{(a,0): a \text{ in } \mathbb{R}\}$ is a subspace of \mathbb{R}^2 .

3. Consider the vector space \mathbb{R}^3 . Determine whether or not S is a subspace, for $S = \{(a, b, c) : 2a - b = c\}$.

Need to check closure under vector addition and scalar multiplication. VA: $(a_1, b_1, c_1) + (a_2, b_2, c_2) = (a_1 + a_2, b_1 + b_2, c_1 + c_2)$. We assume that $2a_1 - b_1 = c_1$ and that $2a_2 - b_2 = c_2$. Adding these we get $2a_1 - b_1 + 2a_2 - b_2 = c_1 + c_2$. Rearranging, we get $2(a_1 + a_2) - (b_1 + b_2) = (c_1 + c_2)$, hence S is closed under VA. SM: d(a, b, c) = (da, db, dc). We assume that 2a - b = c, multiplying by d we get 2da - db = dc. Hence S is closed under SM, and is a subspace.

4. Consider the vector space \mathbb{R}^2 . Show that the following set is dependent: $\{(1,2), (2,3), (3,4)\}$.

Solution 1: The dimension of \mathbb{R}^2 is 2, which is the maximal size of an independent set. This set must therefore be dependent. Solution 2: 1(1,2)-2(2,3)+(3,4) = (0,0) is a nondegenerate linear combination of these vectors yielding (0,0). Other linear combinations are possible.

5. Consider the vector space \mathbb{R}^2 . Show that the following set is spanning: $\{(1,2), (2,3), (3,4)\}$.

Given any (x, y) in \mathbb{R}^2 , we need to find some a, b, c so that a(1, 2) + b(2, 3) + c(3, 4) = (x, y). Many solutions are possible; for example a = -3x + 2y, b = 2x - y, c = 0. Observe that (-3x + 2y)(1, 2) + (2x - y)(2, 3) + 0(3, 4) = (-3x + 2y, -6x + 4y) + (4x - 2y, 6x - 3y) + (0, 0) = (x, y).

Note: It is not correct to claim that this set is spanning because it contains three vectors and \mathbb{R}^2 has dimension 2. For example, $\{(1,0), (2,0), (3,0)\}$ contains three vectors, but is not spanning.